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Abstract

We study an observable risk-return tradeoff for which risk “preferences” are normatively
prescribed by the desire to win the game. The choice is whether to shoot a 2-pointer or a
3-pointer in professional (NBA) basketball. When trailing, teams should get more risk-loving
as they fall further behind, matching prospect theory preferences. When leading, risk aversion
should increase with the lead, running counter to typical risk preferences. We find strong
evidence that players trade off risk and return correctly only in the trailing domain. In the
leading domain, they incorrectly exhibit decreasing absolute risk aversion with the magnitude of
their lead. Players thus exhibit preferences similar those widely found in the lab, but misapplied
in this setting.
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1 Introduction

Everyone has risk attitudes that they use to go about their daily life. In many settings, these day-
to-day preferences run counter to one’s or one’s employer’s long-run best interests. For example,
Benartzi and Thaler (1995) argue that excess risk aversion in long-run personal investments is
explained by excessive focus on year-over-year returns. These investors, however, are typically
inexperienced and lack risk management expertise. Such caveats are not relevant to a firm manager
who brings personal risk preferences to bear on firm choices, creating a well-known agency problem
(Fama, 1980). This is more than a theoretical concern because in controlled experiments firm
managers tend to be risk-loving over losses and risk averse over gains (Laughhunn et al., 1980;
Fiegenbaum and Thomas, 1988). Since it is generally impossible to observe the (ex-ante) gambles
managers face it is unclear how pervasive this bias is in practice. A critical question is thus: to
what extent are the risk preferences employed by experienced agents in the field biased by their
day-to-day disposition towards risk?

We tackle this question by studying an observable risk-return tradeoff made by highly experi-
enced professionals: National Basketball Association (NBA) players selecting between 2-point and
3-point shot attempts. Four important features of their strategic environment make it well suited
for this purpose. First, players have ample experience with the decision. Second, the high stakes
nature of professional sports mean millions of dollars are often on the line. Third, and perhaps most
importantly, we need not conjecture as to what constitutes a choice mistake since risk “preferences”
are entirely prescribed by the desire to win. Fourth, the risk preferences players should adopt differ
starkly from those widely found through experimental elicitation in the laboratory and field.

We define a shot’s real value as the increase in win probability for the shooting team if the shot is
made. The real value of a 3-point shot relative to a 2-point shot depends primarily on the score mar-
gin and time-remaining in the game. Early in the game, when many scoring opportunities remain,
teams should maximize expected points—a 3-pointer is simply worth one-and-a-half 2-pointers.
While 3-pointers have approximately double the per-shot variance, at this stage the team is best
served by risk neutrality—per-shot variance has a lower order contribution to win probability than
expected point value. When there are relatively few remaining scoring opportunities, approximately
the last one-third of the game, these asymptotics begin to lose bite. Now the trailing team should
place an increasingly positive value on per-shot variance as time remaining decreases and as they
fall further behind in order to induce larger swings in the final point total. Conversely, the leading
team should place an increasingly negative value on per-shot variance as their lead increases and
time remaining decreases.

To see how the requirements of optimal play map to typical risk preferences, note that as a
trailing team falls further behind it should get more risk-loving, just as in prospect theory.1 When
the game is tied, even with very little time remaining, a team should be effectively risk neutral and

1Rather than cite one of many review articles, we note that Kahneman and Tversky (1979) has more than 25,000
citations according to Google Scholar.
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should become increasingly risk-averse as it moves into the lead. Both of these properties violate
decreasing absolute risk aversion, a robust feature of individual preferences over gambles (Friend
and Blume, 1975; Robson, 2002). Thus, the risk attitudes players should exhibit match (typical)
day-to-day preferences in the trailing domain but run counter to them in the leading domain.

In order to derive testable predictions of adherence to these risk dynamics, we model the strategic
interaction as a two-by-two attacker/defender game. The offense chooses shot mixture and the
defense simultaneously allocates scarce “attention” to guard against each shot type. With very
minimal assumptions, we establish the intuitive condition that 3-point efficiency (points scored per
shot) must be inversely correlated with a team’s preference for risk—when a team should become
more risk loving (averse), optimal shot selection implies that 3-point success rate must go down
(up). We test this optimality condition using detailed play-by-play data from four complete NBA
seasons.2

Our key finding is that teams correctly trade off risk and return only in the trailing domain (all
results stated are significant at the 0.001 level). When the losing team should become increasingly
risk-loving, players shoot more 3-pointers and at decreasing expected nominal point value compared
to 2-pointers taken in such situations. This pattern is consistent with optimal play. In contrast,
when the leading team should become more risk averse, as the should when they move further
ahead, they take significantly more 3-pointers and these shots return significantly fewer points in
expectation. The opportunity cost, or price, of a 3-pointer is the expected real value of a forgone
2-pointer. Restating our results, the leading team pays an increasingly higher price for a gamble—a
3-pointer—that is becoming less valuable in real terms. In the leading domain players invert the
price of risk, in the trailing domain they respect it. This finding is quite striking: one could have
more accurately predicted behavior of these experienced agents in a high stakes environment by
reading Kahneman and Tversky (1979) than by accurately modeling the risk-return tradeoff.

There is a deep literature on the role of expertise and incentives in strategic decision making
(see Dellavigna (2009) for a review). Papers typically start with a behavioral pattern observed in
the laboratory and then study it in the field where experience and stakes tend to be higher. For
example, trading experience can eliminate the endowment effect (List, 2003), but does not entirely
remove the disposition effect (Feng and Seasholes, 2005). It is difficult to apply this framework
to risk preferences because the line between choice mistakes and a faithful representation of true
preferences is generally blurry. Instead normative evaluation comes from an agent’s felicity in
maximizing the preference function (Choi et al., 2007) or the consistency of choice across similar
domains, such as purchasing auto and home insurance (Friedman and Savage, 1948; March and
Shapira, 1987; Barseghyan et al., 2011; Dohmen et al., 2011).3 Our setting possesses two critical

2We only use game states in which each team has a predicted chance of winning the game greater than 5%. Finally,
we eliminate fast break possessions used with more than 14 seconds remaining on the shot clock.

3Related work on “choice bracketing” has asserted that often people use “narrow frames” to evaluate “broad frame”
decisions, but again it can be difficult to draw the line between mistakes and preferences (Simonson and Winer,
1992; Benartzi and Thaler, 1995). Pope and Schweitzer (2011) conclude that professional golfers exhibit narrowly
bracketed loss aversion (a day-to-day preference golfers would be better off suppressing). Our results also speak
to the recent debate about how well expertise and preferences travel across contexts. Professional athletes appear
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features that allow us to apply the standard framework: 1) the risk preferences agents should
display are theoretically pinned down 2) the empirical variance and success rates of gambles are
observable.4 We find that our experienced agents behave rationally only when the prescribed risk
preferences align with those found more broadly in prospect theory. When they do not, players
express “everyday” risk attitudes despite the fact that this disposition runs counter to the team’s
interests—experience does not appear to be sufficient to eliminate bias in these agents.

2 Quantifying a Team’s Objective Function

Our analysis is based on the minimal assumption that a team’s goal is to win. One might be
concerned that a lousy team might try to intentionally lose, or “tank,” late in the season to improve
their chance of receiving a high draft pick. Work on the topic suggests this is very rare (Price and
Wolfers, 2010). Within a game, the incentive to win might fade when the game is out of reach,
so we are careful to exclude situations in which one team has less than a 5% chance of winning.
We also eliminate “fast-breaks” (shots taken very quickly after the other team has turned the ball
over, shot clock > 14) and end of quarter shots, as these types of shots tend to have very different
strategic considerations.

We use the term “win value” to refer to the impact a given action has on the probability a
team wins the game and the term “nominal value” for the number of points scored. The three
most important factors that determine win value at a given game state are the score margin, time
remaining and possession of the ball. The increase in win value of adding 2 or 3 points to the team’s
current score are denoted WV2 and WV3 respectively. An intuitive estimation approach for these
quantities is a non-parametric procedure, which takes a large number of games at a given game
state X and compares the probability of winning at X to a nearby state X ′. However, even with
many seasons of data this procedure generates relatively noisy estimates of the slope and curvature
of the win probability surface. We instead employ a parametric procedure that directly models the
impact of team quality, pace of play, margin, time remaining and other relevant factors to predict
win probability for a given game state. We describe it in detail the Appendix. Figure 1 shows
that this method yields very similar win probability projections to those attained by nonparametric
estimation. Given the far greater smoothness, we use the parametric estimates from here on out.

The relationship between the win value of 3-pointers and 2-pointers can be represented by a
parameter that we call α, defined as: α = WV3

WV2
. It measures how much a 3-pointer’s win value

diverges from that of one-and-a-half 2-pointers. When α > 1.5, the win value of a 3-pointer exceeds
it’s nominal value. This occurs for the trailing team, especially late in the game, which can be seen
in the convexity in the trailing domain of Figure 1. When α < 1.5 the opposite is true, a 3-pointer
is worth less than its nominal value—the team should be risk averse—as seen in the concavity of

capable of correctly mixing in 2x2 matching pennies style games when playing their sport (Walker and Wooders,
2001; Chiappori et al., 2002), but this ability does not appear to generalize to the lab (Levitt et al., 2010).

4Walls and Dyer (1996) look at ex-post revealed risk preferences in firm purchases of drilling rights. They discuss
challenges associated with estimating the necessary probabilities and economic returns when studying firm decisions.
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Figure 1: Parametric projects of win probability conditional on score margin and time remaining
for the home team in even match-up; Panel 2: non-parametric estimates of the same function.

Figure 2: α as a function of game state: Quarters 1-3 (left) and Quarter 4 (right).

the win probability function in the leading domain.
Across all game states α is monotonically decreasing with a team’s current lead, which is easy

to see in Figure 2. Panel 1 shows the first three quarters for even strength teams on a neutral court.
In the first half α is always close to 1.5—teams should be very close to risk neutral at all times.
In the third quarter (minutes 12-24 remaining) we see more variation; α is between 1.4 and 1.6
provided the margin is less than 11 points. Panel 2 shows the fourth quarter (note the change in
y-axis scale), which shows α varying widely. With fewer possessions remaining, the trailing (leading)
team’s preference for risk increases (decreases) dramatically.5

5α is a natural proxy for a team’s preference for risk because it maps directly to the relative preferences over
potential outcomes. Consider a case where p2 = 0.50 and p3 = 0.33. In this case, each shot has an expected
nominal value of one point. The variance in the return of a 3-point attempt is 32 ∗ .33 ∗ .66 = 1.96 and for the
two-pointer 22.52 = 1. Suppose α = 1.7. This means the expected utility (expected real value) of a 3-pointer is
0.33*1.7*WV2=0.561*WV2 and 2-pointer is worth 0.5 ∗WV2; or in other words, the 3-pointer is worth 12% more in
win value, despite having equal nominal value. If we model the team as having preference over mean and variance,
we could map any α to a utility value of variance. However, we view α as a more directly interpretable parameter.
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3 The Shot Type Allocation Game

We express the offense’s optimization problem as a function of α and solve for the optimal mix of 2
and 3-pointers for each game situation. We will employ a concept in basketball analysis called the
“usage curve” (Oliver, 2004; Skinner, 2011). The usage curve relates the frequency of a given shot
type (2- or 3-pointer) to success rate and are naturally assumed to be downward sloping, implying
that as a team shoots more 3-pointers the success rate on each successive 3-point attempt goes
down and the success rate on 2-pointers goes up.6 Let φ(u3) denote the average probability of
success for 3-pointers when the fraction of shots attempted as 3’s is u3 ∈ [0, 1]. ψ(1− u3) gives the
corresponding average probability of success on 2-point attempts.

We’ll start by solving the model with no defensive adjustment. Since WV3 = αWV2, we can
write the team’s maximization problem as:

max
u3

u3 ∗ φ(u3) ∗ αWV2 + (1− u3) ∗ ψ(1− u3) ∗WV2. (1)

The first order condition can be rearranged to give:

α(φ(u3) + φ′(u3) ∗ u3) = ψ(1− u3) + ψ′(1− u3)(1− u3). (2)

The left side of equation (2) gives the marginal returns to shooting a 3-pointer. Shooting an
extra 3-pointer returns the current average value (α ∗ φ[u3]), but it also impacts the average value
of all the other 3-pointers taken (u3) by a degree given by the slope of the usage curve (φ′[u3]).
The right hand side gives the marginal returns to shooting a 2-pointer and can be understood with
similar logic. In this model with no defensive adjustment, u3 is increasing with α. To see this note
that if α increases then the left side goes up because the term φ(u3) +φ′(u3) ∗u3 has to be positive,
otherwise the marginal 3-pointer nets negative value. So the left side must increase, to counter-act
this the right side must go up as well, which occurs only when u3 increases.

Appendix Figure 1 gives a graphical representation of the maximization problem and the impact
of an increase in α. It is equivalent to a monopolist firm producing two goods with downward sloping
demand and zero production costs from a unit of common input. An increase in α shifts up the
“demand” for 3-pointers as a tax-rebate would. Just as the monopolist would not set the same
price for the goods unless the demand curves were identical, optimal shot choice does not imply
2-pointers and 3-pointers offer the same average point value. The difference in average shot value
is determined by the slope and intercepts of the usage curves. In practice 3-pointers tend to return
more points-per-shot on average and are shot less often than 2-pointers, together implying a usage
curve with a higher y-intercept and a steeper slope.

We now formally state our first proposition.
6A micro-founded explanation for this assumption comes from an optimal stopping model, as given in Goldman

and Rao (2013). If we model the offense as getting shot opportunity arrivals over the course of a 24-second shot-clock,
then to take more 3’s, the team has to accept lower quality 3-point opportunities on the margin.
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Proposition 1 In the model with no defensive adjustment, as α increases the fraction of 3-pointers
attempted (u3) goes up, the nominal value of attempted 3-pointers goes down, the nominal value of
attempted 2-pointers goes up and the real value of attempted 3-pointers goes up.

Proof: See Appendix

The model without defensive adjustment can be interpreted as representing a world in which
defensive adjustments matter relatively little. Incorporating defensive adjustments is not difficult;
the defense’s objective is simply the opposite of the offense’s (it wants to minimize equation (1)—an
increase in the value of 3’s increases the incentive to defend against them). We assume the defense
has a unit of “defensive resources,” which it can apply to defending 2’s and 3’s: d2 + d3 = 1. More
defensive attention lowers the success rate of a shot type. We modify the usage curves to include
defense (φ(u3, d3), ψ(u2, d2)). Analysis of this model is straightforward, but algebraically involved,
so we have placed it to the Appendix. We now state our second and third propositions:

Proposition 2 In the model with defensive adjustment, as α increases the average nominal value
of attempted 3’s falls and the average nominal value of attempted 2’s rises.

Proof: See Appendix

Proposition 3 In the model with defensive adjustment, as α increases the change in the usage rate
of 3’s is ambiguous. It depends on the slope of the 3-point usage curve, the impact of defense on the
marginal shot values and the concavity of the usage curves with respect to defensive pressure.

Proof: See Appendix

Proposition 2 states that the no-defense model’s prediction that the average nominal value of
of 3-pointers falls as α increases carries through. Proposition 3 states that the shot type frequency
prediction is not robust to allowing a large class of defensive pressure adjustments. With defensive
adjustment, the offense will shoot more 3’s provided the defense cannot adjust pressure efficiently
enough to discourage these additional attempts.

Our final extension of the model is to allow for a multiplicative function of α on each usage
curve that accounts for a possible motivational impact of being behind in the game, as in Berger
and Pope (2011).7 It is easy to show that this term will cancel out of the first order conditions.
However, we must amend Proposition 2 to be:

Proposition 4 If we allow for a motivational impact of trailing and defensive adjustment, then as
α increases, the average nominal value of 3-pointers falls relative to the average nominal value of
2-pointers.

7We could also model this as an additively separable term with the same impact on shot selection
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When 3’s become more valuable, maximization implies that the efficiency of 3’s must fall relative
to 2’s. This is our most robust prediction, as it is true in the very general defensive adjustment
setting and when allowing for an extra motivational impact of being behind. Respecting the returns
to risk requires that Proposition 4 holds.

One concern is that we have modeled the team as greedily maximizing the probability winning
the game at each possession. We are not allowing them to change the expected plan for shooting
decisions on future possessions. This assumption limits the ability of our model to provide accurate
(fully rational) point estimate predictions of optimal adjustment. For instance, if we could measure
the marginal efficiency functions for 2 and 3-pointers, then it would be useful to have a complete
dynamic program to generate the exact response to maximize the chance of winning the game.
However, since we cannot observe these quantities, our tests of optimality are limited to comparative
statics and for these tests the myopic assumption is immaterial. Indeed, Proposition 4 can be
distilled to the following: as the real value of an asset increases agents will pay a higher nominal
price.

4 Results

4.1 Frequency of 3-point vs. 2-point shot attempts

We first examine the impact of α on the frequency of 3-point shot attempts. We model the proba-
bility a team’s first shot on a possession is a 3-pointer using a random coefficient linear probability
model, which allows coefficients to vary for each team in each season (a “team-year”). We control
for each combination of ten players with a unique fixed effect (δ) for each match-up. Our estimating
equation is given by:

Pr(3PAp) = δOffp,Defp + β1,t[αpl × 1{αpl ≤ 1.5}] + β2,t[αpl × 1{αpl > 1.5}],

where Offp and Defp denotes the five-man offensive and defensive line-ups, respectively, on pos-
session p and αp denotes the value of α faced by the offensive team on possession p. This general
specification ensures that we are not confounded by lineup effects, but it does chop our data into
a very wide (and sometimes very short) unbalanced panel. While the value of αp is sequentially
exogenous to Pointsp, it is endogenous to lagged outcomes occurring previously in the same game.
This generates a potentially severe dynamic panel bias. In the spirit of the Arellano-Bond panel
estimator, we overcome this difficulty by using a lagged value of α calculated on possession pl, the
possession of the last substitution event (the last time the FE changed), as a proxy in this and all
future econometric specifications.8

β1,t gives the impact of an increase in α for team t on possessions when the team is leading.
Here α < 1.5, so as α increases the team should move closer to risk neutrality. β2,t gives the impact
of an increase in α for team t when they are trailing. Here α > 1.5, so as α increases the team

8The ‘lagged’ value, αpl has a correlation of ρ = 0.9142 with αp.
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should become more and more risk-loving. Our model without defensive adjustment predicts that
an optimizing offensive team should shoot progressively fewer 3’s as α increases (as it gains a lead).
That is, β1, β2 < 0. When we incorporate defensive adjustment, we lose this as a formal prediction.
But provided the defensive technology does not fundamentally change with α we should expect both
coefficients to have the same sign.

Table 1: Random−coefficient estimates of the impact of α on three−point usage rates.
Explanatory Weighted average† Mean Median
Variable coefficient coefficient coefficient

t−stat t−stat t−stat‡

β̂1 : αpl × (1{αpl ≤ 1.5} -0.258 -0.259 -0.262
t=-6.77 t=-6.30 t=-4.75

β̂2 : αpl × (1{αpl > 1.5} 0.202 0.216 0.176
t=4.62 t=4.71 t=3.10

Team-years=120, Shots=481,544
† Inverse variance weights used to aggregate coefficients.
‡ Sign test used to construct t−statistics on the median.

Estimating this model for each team-year in our sample produces 120 total estimates of each
parameter, which are aggregated in Table 1. Examining the first row, we see that β1 is significantly
negative (t = 6.30, mean), meaning that as the relative real value of 3-pointers increases the
leading team shoots fewer of them. As shown in Figure 2, α increasing for the leading team
means, all else equal, the game is getting closer. Based on this we would expect β2 to be negative
as well, meaning the trailing team shoots fewer 3-pointers as they fall further behind. Instead
we see that β2 is estimated to be significantly positive (t = 4.71, mean)—they attempt more
3-pointers as α increases. The response asymmetry is easier to see in Figure 3, which plots semi-
parametric estimates (conditioning on lineup fixed effects) aggregated across teams. The magnitudes
are meaningful. When a team is in a firmly risk-averse situation they shoot about 20% more 3-
pointers as compared to when they should be risk neutral. Provided defensive technology does not
depend directly on the score margin the model predicts that this line should be monotonic. Instead
we see it is U-shaped, reaching a minimum when the game is tied (precisely when teams should be
risk neutral).

4.2 The efficiency of 3-point vs. 2-point shot attempts

We delve further into this asymmetry in our analysis of shooting efficiency. Recall that our most
robust prediction is given by Proposition 4. Even if players get generally better when they are
trailing, our model still implies that 3-point opportunities cannot increase in value as much as 2-point
opportunities. That is, the gap in point value between 3 and 2-point attempts must be declining
with α. Based on what we found in the last subsection, we would not expect this prediction to
hold. Since the leading team takes more 3-pointers as they move further into the lead, a downward
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Figure 3: Semi-parametric estimates of 3-point usage rates as a function of α for a typical team.
Analysis is conditional on lineup fixed effects and the bandwidth on α is set to .015.

sloping usage function means they would have to accept lower returns to do so. To look at shooting
efficiency directly, we use the following random-coefficient linear regression model:

Pointsp = δOffp,Defp + β1,t · 1{3PAp}+ β2,t[(αpl − 1.5)× 1{αpl ≤ 1.5}] + β3,t[(αpl − 1.5)× 1{αpl > 1.5}]

+ β4,t[1{3PAp} × (αpl − 1.5)× 1{αpl ≤ 1.5}] + β5,t[1{3PAp} × (αpl − 1.5)× 1{αpl > 1.5}].

We again include fixed effects for each unique five-man offensive and defensive line-up to exclude
confounding effects from lineup selection. The dependent variable is “total possession efficiency,”
which is the total number of points scored following the shot attempt but before possession of the
ball changes hands (this includes the shot going in, free-throws related to the shot and any points
scored after an offensive rebound(s)). In the appendix, we also present coefficient estimates for two
related measures: 1) the points scored on the shot for shooters that were not fouled 2) number
of points scored on the shot plus any free-throws made related to the shot. The results are not
materially different across these measures.

β1 can be interpreted as the average nominal point differential between 3- and 2-point shots in
a risk-neutral (α = 1.5) game state. β2 captures the impact of α on 2-pointer efficiency for the
leading team (α ≤ 1.5), while β3 captures this effect for the losing team. β4 and β5 directly test
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Proposition 4, these coefficients represent the differential effect of α on the efficiency of 3-point
attempts relative to 2-point attempts for a winning and losing team respectively.

Estimates of β1−5 are computed for each team-year. β1 is strongly positive—3 pointers have 0.15
higher average point returns in the risk-neutral baseline. Recall that this implies a higher constant
and steeper slope for the 3-point usage curve. The estimates for β2 and β3 are significantly positive.
This means that as a team falls further behind, 2-pointers get more efficient. This is strong evidence
of the motivational impact of losing.

Table 2: Random−coefficient estimates of the impact of αpl on nominal returns to 3-point attempts.
Total Possession Efficiency

Explanatory Weighted† Mean Med.‡

Variable avg. coeff. coeff. coeff.
β̂1 : 1{3PAp} 0.207 0.207 0.205

t=33.87 t=33.27 t=10.41
β̂2 : α∗

pl
× 1{αpl ≤ 1.5} 1.07 1.26 1.13

t=5.94 t=6.01 t=5.29
β̂3 : α∗

pl
× 1{αpl > 1.5} 0.55 0.656 0.313

t=2.98 t=3.27 t=2.37
β̂4 : 1{3PAp} × α∗pl 0.82 0.805 0.977
×1{αpl ≤ 1.5} t=4.64 t=4.23 t=3.29

β̂5 : 1{3PAp} × α∗pl -0.494 -0.6 -0.419
×1{αpl > 1.5} t=-2.70 t=-3.17 t=-1.83

Team-years=120, Shots=481,544.
† Inverse variance weights used to aggregate coefficients
‡ Sign test used to construct t−statistics on the median.
For notational convenience: α∗

pl
= αpl − 1.5.

The key test of optimality lies in the estimates of β4 and β5. Proposition 4 states that optimal
response to changing incentives over risk requires that both coefficients are negative. This condition
is met for trailing teams, β5 is significantly negative (p < 0.000001 for the weighted average). Recall
from Table 1 that the trailing team also responds to an increase in α by shooting more 3-pointers;
this overall pattern of behavior is consistent with the offensive having a greater ability to adjust
than the defense. The offense shoots more 3’s and the average point value falls as they move down
the usage curve, or in other words the offense pays a higher nominal price in forgone 2-pointers
for the increase in the real value 3-pointers have in terms of winning the game—trailing offense
adheres to the comparative static prediction of its risk-loving utility function. In stark contrast, β4
is estimated to be significantly positive (and roughly the same absolute value as β5). Recall that
we found in Table 1 that the leading team tends to shoot fewer 3’s when α increases. Here we
see that this decrease in usage is accompanied by an increase in efficiency (again consistent with a
downward sloping usage curve and limited defensive adjustment). For a leading team, as the game
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Figure 4: Semi-parametric estimates of 3-point efficiency rates as a function of α for a typical team.
Analysis is conditional on lineup fixed effects and the bandwidth on α is set to .015.

gets closer, the team should become more risk-neutral, yet the team actually behaves in a more risk
averse manner. Leading teams invert the price of risk, paying a greater premium when it is worth
less.

The response asymmetry is clearly seen in Figure 4, which plots the efficiency premium of
3-pointers relative to 2-pointers using a semi-parametric estimator that conditions on line-up fixed-
effects. The normatively prescribed risk preferences a team should have imply this line ought to be
everywhere downward sloping. Instead we see it is only downward sloping the losing domain and is
in fact significantly upward sloping in the leading domain. Again the magnitudes are meaningful.
The overall estimates indicate nominal 3-point efficiency falls 5-10% when an offense should be
substantially risk-averse, this difference separates very good teams from very bad ones in the NBA.
Further, the real value drop is even larger given they are also accepting higher per-shot variance
with the lower mean efficiency.

5 Conclusion

People seem to make choice mistakes by using their “day-to-day” risk preferences in economic con-
texts that they are ill-suited for. For instance, they buy actuarially unfair extended warranties and
are too conservative with their long-term investments. These behaviors often imply absurd levels
of risk aversion (Rabin, 2000), but may seem quite reasonable to the person making them. Some of
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these mistakes are chalked up to inexperience and it is typically difficult to study more experienced
agents in the field because the data requirements to study risk attitudes are quite high. One needs
an estimate of the ex-ante probabilities and the returns to gambles. Further it is difficult to discern
choice mistakes from faithful representations of true preferences. We overcome this challenge by
studying a choice setting where the risk preferences agents should hold can be pinned down with
a single, minimal assumption. These risk preferences are consistent with widely held individual
preferences over money when the team is trailing but are inconsistent them when the team is lead-
ing. We find shot selection is consistent with optimal play only in trailing domain. When leading,
players invert the price of risk, indicating that experience is insufficient to eliminate this type of
choice mistake in these agents.
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6 Appendix

6.1 Figures

Appendix Figure 2: Graphical representation of the no-defensive adjustment model. The initial
“profit maximizing” condition given by the line intersecting point A and the impact of an increase

in α with the new equilbrium given by the line intersecting A′.

6.2 The model with defensive adjustment

Offense (defense) seeks to maximize (minimize) the offenses increase in win probability in a given
possession. This utility function (for the offense) is

U = u3p3WV3 + u2p2WV2

U

WV2
= αu3p3 + u2p2

subject to the constraints that

u2 = 1− u3
d2 = 1− d3
p3 = φ(u3, d3)

p2 = ψ(u2, d2).
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We assume the following (written in terms of φ but they all hold for ψ too):

1. Usage curves are downward sloping: φ1 < 0.

2. Usage curves are such that marginal shots have declining value:
d2(u3 · φ(u3))

du23
= 2φ′(u3) +

u3φ
′′(u3) < 0

3. Defensive pressure lowers shooting percentage: φ2, ψ2 < 0.

4. Defense has diminishing returns: φ22, ψ22 > 0.

5. Using more possessions in a certain way increases (makes more negative) returns to defense
against that type of use: (φ2 + u∗3φ21) < 0.

Let starred values denote the equilibrium quantities. Then the defense’s first order condition is
given by

αu∗3φ2(u
∗
3, d
∗
3) = (1− u∗3)ψ2(1− u∗3, 1− d∗3), (3)

where the subscript denotes a derivative in the corresponding argument. The offense’s first order
condition is given by

α[φ(u∗3, d
∗
3) + u∗3φ1(u

∗
3, d
∗
3)] = [ψ(1− u∗3, 1− d∗3) + (1− u∗3)ψ1(1− u∗3, 1− d∗3)] (4)

where the bracketed quantities represent marginal shot probabilities for 3 and 2 point shots respec-
tively. Both of these must both be greater than 0. Taking total differentiation of (3) and omitting
the arguments of φ and ψ yields

u∗3φ2dα+ αu∗3φ22dd
∗
3 + α(φ2 + u∗3φ21)du

∗
3 = −u∗2ψ22dd

∗
3 − (ψ2 + u∗2ψ21)du

∗
3

and rearranges to

u∗3φ2dα+ [α(φ2 + u∗3φ21) + (ψ2 + u∗2ψ21)] du
∗
3 + [αu∗3φ22 + u∗2ψ22]dd

∗
3 = 0 (5)

b2dα+ a21du
∗
3 + a22dd

∗
3 ≡ 0,

where the values of a11, a12 and b1 are defined implicitly. A similar analysis of equation (4) gives

[φ(u∗3, d
∗
3) + u∗3φ1(u

∗
3, d
∗
3)]dα+ [(2φ1 + u∗3φ11) + (2ψ1 + u∗2ψ11)]du

∗
3 (6)

+ [α (φ2 + u∗3φ12) + (ψ2 + u∗2ψ12)] dd
∗
3 = 0

b1dα+ a11du
∗
3 + a12dd

∗
3 ≡ 0.
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where the values of a21, a22 and b2 defined implicitly. In matrix notation[
a11 a12

a21 a22

][
du∗3
dd∗3

]
= −

[
b1

b2

]
dα

Then by Cramer’s Rule

dd∗3
dα

= −

∣∣∣∣∣a11 b1

a21 b2

∣∣∣∣∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣
=

(−)︷ ︸︸ ︷
a21b1−

(+)︷ ︸︸ ︷
a11b2

a11a22 − a12a21︸ ︷︷ ︸
(−)

> 0

To sign these derivatives not that, a11 < 0 (marginal shots have diminishing value), a22 > 0

(diminishing returns to defense), and a12 = a21 < 0 (shooting more 3s raises the effectiveness of
defense on 3s). Thus both denominators are negative. Also b1 > 0 (its a marginal shot value) and
b2 < 0 (φ2 < 0). Signing this derivative states that defensive pressure on 3’s must increase with α.

Proof of Proposition 3

du∗3
dα

= −

∣∣∣∣∣b1 a12

b2 a22

∣∣∣∣∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣
=

(+)︷ ︸︸ ︷
b2a12−

(+)︷ ︸︸ ︷
b1a22

a11a22 − a21a12︸ ︷︷ ︸
(−)

=?.

Manipulating the numerator, we have that
du∗3
dα

> if and only iff:

a12
b1

>
a22

b2

We first note that both sides of this inequality are negative, it is convenient to write:∣∣∣∣a12b1
∣∣∣∣ < ∣∣∣∣a22b2

∣∣∣∣

a12 = α(φ2 +u∗3φ12)+(ψ2 +u∗2ψ12) is the cross-partial marginal effect of defense. It says “how much
more effective does defense become when an offense increases its fraction of 3’s. This terms gives the
incentive for the defense to adjust into 3’s. b1 is the offense’s marginal shot value of a 3, as the usage
curve gets steeper, this value falls. On the RHS, the numerator is a term, αu∗3φ22 + u∗2ψ22, that
captures the concavity of the defense’s response function. The denominator captures the marginal
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impact of defense. If the above equation holds, the offense will take more 3’s when their preference
for risk increases. This equation says this is more likely to occur when the defense has a concave
adjustment function (they face strong diminishing returns to selective pressure), when the cross
partial is low (the extra impact of guarding 3’s does not increase much with the offense’s 3-point
usage) and when the usage curve of a 3-pointer relatively flat (raising the marginal value of a
3-pointer, which raises the denominator on the LHS).

Proof of Proposition 2
Other comparative statics are directly implied by our constraints,

du∗2
dα

= −du
∗
3

dα
=?

dd∗2
dα

= −dd
∗
3

dα
< 0

dp∗3
dα

=
du∗3
dα

φ1 +
dd∗3
dα

φ2

= −φ1(
(+)︷ ︸︸ ︷
b1a22−

(+)︷ ︸︸ ︷
b2a12) + φ2(

(+)︷ ︸︸ ︷
a11b2−

(−)︷ ︸︸ ︷
a21b1)

a11a22 − a12a21︸ ︷︷ ︸
(−)

which first does not appear signable, but can be rearranged to

= −

(−)︷ ︸︸ ︷
φ1b1a22 +

(−)︷ ︸︸ ︷
b2(φ2a11 − φ1a12)−

(+)︷ ︸︸ ︷
φ2a21b1

a11a22 − a12a21︸ ︷︷ ︸
(−)

< 0,

where the middle term in the numerator can be signed by noting that b2 < 0 and (φ2a11−φ1a12) =

φ1φ2(1 + 2u∗3) > 0.

dp∗2
dα

=
du∗2
dα

ψ1 +
dd∗2
dα

ψ2 < 0,

follows by symmetry to the above calculation.

6.3 Proofs for the baseline model

Proof of Proposition 1 The only part of Proposition 1 not shown in the text is that the win value
of 3’s must increase. We think intuition can be best scene through the lense of a classic economics
setup. Consider a monopolist facing demand curve P (q) and an upward slope marginal cost curve
C ′′(q) < 0. Imagine a subsidy from the government of so that for each dollar earned, the firm earns
1 + x = α > 1 dollars. What the proposition states is that if the government offers subsidy x, the
price cannot fall by more than x.
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This problem is isomorphic to our shot allocation problem because the downward sloping 2-point
usage curve implies an increasing marginal opportunity cost of shooting 3’s. As I shoot more 3’s, I
give up better and better 2-pointers. The first order condition of this problem is:

αMR(q) = MC(q)

Taking the total derivative, rearranging and multiplying by dp
dq we get:

dp

dα
=

(
MR

MC ′ − αMR′s

)
dp

dq

We are interested in whether p ∗ α is greater than the orginal price, this amounts to whether:

d(pα)

dα
= α ∗ dp

dα
+ p > 0

Plugging, in our condition becomes, is:

p =

(
αMR

αMR′s−MC ′

)
dp

dq

p >
(p+ p′(q)q)p′(q)

p′′(q)q + 2p′(q)

Cross-multiplying and rearranging we have:

qp′′(q) <
q(p′(q)2q − p′(q)p)

pq

−2p′(q) <
q(p′(q)2q − p′(q)p)

pq

where the second line follows because qp′′(q) + 2p′(q) < 0 (marginal revenue is downward sloping).
Canceling out and simplying, this equation reduces to:

p′(q) > −p
q

p′(q) ∗ q
p
> −1

1

ε
> −1

where ε is the elasticity of demand. The last line must hold, otherwise the firm earns negative
marginal revenue.

6.4 Parametric model of win probability

A game of NBA basketball has 48 minutes of game time, with ties being settled by a 5-minute
overtime. Consider two teams, home (h) and away (a). Let Sh,N and Sa,N denote the current scores
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for the home and away team with N offensive possessions (for each team) remaining in the game.
Let Ph,i and Pa,i denote the number of points scored by the home/away team on the ith possession
from the end of the game. The home team wins if it has more points at the end of the game, which
we can express as:

Sh,0 > Sa,0 ⇐⇒ Sh,N +

N∑
i=1

Ph,i > Sa,N +

N∑
i=1

Pa,i ⇐⇒
N∑
i=1

Ph,i − Pa,i > Sa,N − Sh,N .

To model how teams generate points, let {µh, σ2h} and {µa, σ2a} represent the mean and variance of
points per possession that each team is able to achieve in the match-up. If the number of remaining
possessions, N , is large, the central limit theorem gives the probability of the home team winning
as:

P (Home Win) = P (Sh,0 > Sa,0) = P

(
N∑
i=1

(Ph,i − Pa,i) > Sa,N − Sh,N

)

= Φ

Sh,N − Sa,N +N(µh − µa)√
N(σ2h + σ2a)

 , (7)

where Φ is the CDF of the standard normal distribution. Examining this expression, we see that
an ability advantage (µ higher than opponent) matters proportional to the number of remaining
possessions. Each factor’s marginal impact on winning the game is easily obtained by differentiating
equation (7). The following expression gives the impact of a point scored for the home team on win
probability:

dP (Home Win)

dSh,N
= φ

(Sh,N − Sa,N ) + (N(µh − µa))√
N(σ2h + σ2a)

 1√
N(σ2h + σ2a)

, (8)

where lower-case φ is the standard normal PDF. To estimate this equation, we first impute
the number of remaining possessions using the team-specific paces-of-play in a given match-up
and by adding one possession to the team currently holding the ball. Given the standard normal
specification, it is natural to estimate equation (7) with Probit regression. The projections give the
probability the home team will win at each of state of the game. Figure 1 Panel 1 shows these
projections.

6.5 Additional Efficiency Metrics
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Table 3: Random−coefficient estimates of the impact of αpl on nominal returns to 3-point attempts.

Effective Field Goal % True Shooting % Gross Possession Efficiency
Explanatory Weighted† Mean Med.‡ Weighted† Mean Med.‡ Weighted† Mean Med.‡

Variable avg. coeff. coeff. coeff. avg. coeff. coeff. coeff. avg. coeff. coeff. coeff.
β̂1 : 1{3PAp} 0.207 0.207 0.205 0.127 0.127 0.13 0.142 0.142 0.142

t=33.87 t=33.27 t=10.41 t=21.49 t=21.13 t=9.31 t=24.00 t=23.51 t=9.68
β̂2 : α∗pl × 1{αpl ≤ 1.5} 1.07 1.26 1.13 0.806 0.975 0.82 0.927 1.12 1.16

t=5.94 t=6.01 t=5.29 t=4.77 t=4.94 t=4.56 t=5.49 t=5.66 t=4.75
β̂3 : α∗pl × 1{αpl > 1.5} 0.55 0.656 0.313 1.04 1.17 0.923 1.5 1.55 1.78

t=2.98 t=3.27 t=2.37 t=6.03 t=6.29 t=4.38 t=8.68 t=8.33 t=6.02
β̂4 : 1{3PAp} × α∗pl 0.82 0.805 0.977 1.09 1.1 1.33 1.11 1.11 0.839
×1{αpl ≤ 1.5} t=4.64 t=4.23 t=3.29 t=6.46 t=6.02 t=4.38 t=6.58 t=6.10 t=4.02

β̂5 : 1{3PAp} × α∗pl -0.494 -0.6 -0.419 -0.936 -1.05 -0.887 -0.888 -0.949 -0.899
×1{αpl > 1.5} t=-2.70 t=-3.17 t=-1.83 t=-5.41 t=-5.86 t=-3.65 t=-5.14 t=-5.30 t=-3.83

Team-years=120, Shots=481,544, † Inverse variance weights used to aggregate coefficients
‡ Sign test used to construct t−statistics on the median. ∗ We suppress the −1.5.
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